Math 10A with Professor Stankova
Worksheet, Discussion \#10; Monday, 9/18/2017
GSI name: Roy Zhao

Related Rates

Example

1. A circle's area is expanding at a constant rate of $5 \mathrm{~m}^{2} / \mathrm{s}$. How fast is its radius changing when its area is $100 \pi m^{2}$?

Solution: The area of a circle is given by $A=\pi r^{2}$. Taking the derivative, we have that $A^{\prime}=2 \pi r r^{\prime}$. Now we plug in the values that we are give. We know that the area is increasing at a constant rate of 5 so $A^{\prime}=5$ and when $A=100 \pi$, we know that $r=\sqrt{100}=10$. So $5=2 \pi(10) r^{\prime}$ so $r^{\prime}=\frac{5}{20 \pi}=\frac{1}{4 \pi} \mathrm{~m} / \mathrm{s}$.
2. A spherical meteor is hurtling towards Earth. The angle of how much of the sky it takes up is changing at $1 \mathrm{rad} / \mathrm{hr}$. If we measure the radius of the meteor to be 100 m , how fast is it hurtling towards us when it takes up half of the sky?

Solution: If the meteor is a distance d away and has a radius r, then the sine of half the angle the meteor takes of the sky is r / d. Let θ be the angle of how much the sky the meteor takes up. Then $\sin (\theta / 2)=r / d$. Taking the derivative and noting at r is constant, we have that

$$
\frac{\cos (\theta / 2) \theta^{\prime}}{2}=\frac{-r d^{\prime}}{d^{2}}
$$

When the meteor takes up half the sky, we have that $\theta=\pi / 2$ and hence we have that $\sin (\pi / 4)=\frac{100}{d}$ so $d=100 \sqrt{2}$. Plugging this all into the equation, we have that

$$
\begin{aligned}
\frac{(\sqrt{2} / 2) \cdot 1}{2} & =\frac{-100 \cdot d^{\prime}}{(100 \sqrt{2})^{2}} \\
\Longrightarrow d^{\prime} & =-50 \sqrt{2}
\end{aligned}
$$

Therefore, the meteor is hurtling towards us at $50 \sqrt{2} \mathrm{~m} / \mathrm{s}$.

Problems

3. A ball of light is falling at a constant rate of $1 \mathrm{~m} / \mathrm{s}$. A man who is $2 m$ tall is standing 10 m away. How fast is the length of his shadow changing when the ball is at a height of $4 m$?

Solution: If the ball is at height d, then drawing a picture tells us that the height of the shadow satisfies the relation that $\frac{h}{2}=\frac{h+10}{d}$ so $d h=2 h+20$. Taking the derivative of both sides gives $d^{\prime} h+d h^{\prime}=2 h^{\prime}$. We are given that $d^{\prime}=-1$ and at $d=4$, solving for h gives $h=10$ so

$$
-10+4 h^{\prime}=2 h^{\prime} \Longrightarrow h^{\prime}=5
$$

So the shadow is increasing at $5 \mathrm{~m} / \mathrm{s}$.
4. A conical cup that is 6 cm wide at the top and 5 cm tall is filled with water is punctured at the bottom and water is coming out at a rate of $10^{-6} \mathrm{~m}^{3} / \mathrm{s}$. Initially, the cup is filled How fast is the height of the water changing when the height is 2 cm ?

Solution: If the height of the water is h, then the radius of the cone formed by the water would be $3 / 5 h$ and so the volume of the water cone is $V=\pi / 3(3 / 5 h)^{2} \cdot h=$ $\frac{3 \pi h^{3}}{25}$. Taking the derivative of both sides gives

$$
V^{\prime}=\frac{9 \pi h^{2} h^{\prime}}{25}
$$

and plugging in -10^{-6} for V^{\prime} and $2 \cdot 10^{-2}$ for h gives

$$
-10^{-6}=\frac{9 \pi 4 \cdot 10^{-4} h^{\prime}}{25} \Longrightarrow h^{\prime}=\frac{-1}{144 \pi} \mathrm{~m} / \mathrm{s}
$$

5. A lamppost is $5 m$ tall. A woman who is $2 m$ tall is walking away from it at a constant rate of $10 \mathrm{~cm} / \mathrm{s}$. When she is 2 m away from the lamppost, how fast is her shadow length changing?

Solution: Using similar triangles, if the woman is at a distance d from the lamppost and the shadow height is h, then

$$
\frac{h}{2}=\frac{h+d}{5} \Longrightarrow 2 d=3 h .
$$

Taking the derivative, we have that $2 d^{\prime}=3 h^{\prime}$ and $d^{\prime}=10 \mathrm{~cm} / \mathrm{s}$ so $h^{\prime}=\frac{20}{3} \mathrm{~cm} / \mathrm{s}$.
6. Sand is being dumped in a conical pile whose width and height always remain the same. If the sand is being dumped in at a rate of $2 m^{3} / h r$, how fast is the height of the sand changing when the pile is 10 cm tall?

Solution: Let the height of the pile be h. Then the radius of the pile is $r=\frac{h}{2}$ and the volume of the pile is $V=\frac{\pi r^{2} h}{3}=\frac{\pi h^{3}}{12}$. Taking the derivative gives $V^{\prime}=\frac{\pi}{4} h^{2} h^{\prime}$. Now we plug in 2 for V^{\prime} and 10^{-1} for h to get $h^{\prime}=\frac{800}{\pi} m / h r=\frac{800}{3600 \pi} m / s=\frac{2}{9 \pi} m / s$.
7. A kite is flying at a current altitude of 100 m . The kite slowly flies further and further away as the string length increases at a rate of $3 \mathrm{~cm} / \mathrm{s}$. Assuming the altitude does not change, how fast horizontally is the kite moving when the angle the string forms with the ground is $\pi / 6$?

Solution: Let ℓ be the length of the rope, and d how far horizontally the kite is flying. Then $\ell^{2}=100^{2}+d^{2}$. Taking the derivative gives $2 \ell \ell^{\prime}=2 d d^{\prime}$. When the angle the string forms with the ground is $\pi / 6$, we calculate that $\ell=200$ and $d=100 \sqrt{3}$ so $d^{\prime}=\frac{200 \cdot 3 \cdot 10^{-2}}{100 \sqrt{3}}=2 \sqrt{3} \cdot 10^{-2} \mathrm{~m} / \mathrm{s}$ or $2 \sqrt{3} \mathrm{~cm} / \mathrm{s}$.
8. A ladder $5 m$ tall is lying against a wall. The bottom of the ladder is pulled out at a rate of $10 \mathrm{~cm} / \mathrm{s}$. How fast is the area of the triangle formed by the ladder, wall, and floor changing when the bottom of the ladder is 3 m away from the wall?

Solution: Let d be how far the bottom of the ladder is away from wall. Then the area of the triangle formed is $\frac{1}{2} \cdot d \cdot \sqrt{25-d^{2}}=A$. Squaring both sides gives $4 A^{2}=d^{2}\left(25-d^{2}\right)$. Now we can take the derivative to get that $8 A A^{\prime}=2 d d^{\prime}(25-$ $\left.d^{2}\right)+d^{2}\left(-2 d d^{\prime}\right)$. When $d=3$, the area is $\frac{1}{2} \cdot 3 \cdot 4=6$ and so

$$
8 \cdot 6 \cdot A^{\prime}=2 \cdot 3 \cdot d^{\prime}(16)+9\left(-6 d^{\prime}\right) \Longrightarrow 48 A^{\prime}=42 d^{\prime}
$$

Since $d^{\prime}=10^{-1} \mathrm{~m} / \mathrm{s}$, we have that $A^{\prime}=\frac{7}{80} \mathrm{~m} / \mathrm{s}$.
9. A conical volcano is 100 m tall and the base has a radius of 50 m . It is filling with lava at a rate of $\pi \mathrm{m}^{3} / \mathrm{s}$. At what rate is the height of the lava rising with it is 50 m tall?

Solution: Let h be the height of the lava. The we can calculate the volume of the truncated cone by taking the total area and subtracting the missing top cone. The top cone has a height of $100-h$ and radius of $(100-h) / 2$. Thus the volume of the lava is

$$
V(h)=\frac{\pi \cdot 50^{2} \cdot 100}{3}-\frac{\pi \cdot(100-h)^{2} \cdot(100-h)}{2^{2} \cdot 3} .
$$

Taking the derivative, we get that

$$
\frac{d V}{d t}=-\frac{\pi(100-h)^{2}\left(-h^{\prime}\right)}{4}
$$

Since $V^{\prime}=\pi$, we have that $h^{\prime}=\frac{4}{50^{2}}=\frac{1}{625}$.

Optimization

Example

10. Suppose you are trying to make a rectangular fence for your yard. You only have 100 m of fence but luckily your house borders a straight river, so one side of your rectangular yard will be bordered by a river. What is the largest area yard you can enclose?

Solution: Let s be the side length of the yard that is perpendicular to the river. Then the side length of the yard that is parallel to the river is $(100-2 s)$ and the area of the yard is $A(s)=s(100-2 s)$. Taking the derivative gives $A^{\prime}(s)=100-4 s$. So $A^{\prime}=0$ when $s=25$ and note that $A^{\prime \prime}(s)=-4<0$ so this means that $A(25)$ is a local maximum. The largest area is $A(25)=25(50)=1250 \mathrm{~m}^{2}$.
11. What is the closest point to $(0,2)$ on the graph $y=x^{2}+1$.

Solution: Given a point (x, y) on the curve, we want to minimize the distance $\sqrt{x^{2}+(y-2)^{2}}$ but note that this is the same as minimizing $x^{2}+(y-2)^{2}$. Now we plug in $y=x^{2}+1$ so we minimize $x^{2}+\left(x^{2}-1\right)^{2}$. Taking the derivative and setting it equal to 0 , we have that $2 x+2\left(x^{2}-1\right)(2 x)=0$ so $4 x^{3}-2 x=0$ and $2 x\left(2 x^{2}-1\right)=0$. The solutions are $x=0$ and $x= \pm \frac{\sqrt{2}}{2}$. The second derivative is $12 x^{2}-2$ and so $x=0$ is a local maximum but $x= \pm \frac{\sqrt{2}}{2}$ are local minimums. Thus, there are two points closest which are $(\pm \sqrt{2} / 2,3 / 2)$.

Problems

12. $(4.2,38)$ When you cough, the radius of your windpipe decreases and affects the speed of the air through it. If r is the radius of the windpipe, then the speed of the air is $S(r)=a r^{2}\left(r_{0}-r\right)$ where a, r_{0} are constants. Find the radius r for which the speed is the greatest.

Solution: We take the derivative and set it equal to 0 to get $2 a r_{0} r-3 a r^{2}=0$ so $r=0$ or $r=\frac{2 r_{0}}{3}$. Taking the second derivative, we get $2 a r_{0}-6 a r$. Thus, the second derivative is positive for $r=0$ and negative when $r=\frac{2 r_{0}}{3}$ meaning that the second value is a local maximum. So the radius is $\frac{2 r_{0}}{3}$.
13. You want to construct a cylindrical container that contains $100 \pi m^{3}$ of water. What should the dimensions of the container be if you want to minimize the total surface area?

Solution: The surface area is $S(r, h)=2\left(\pi r^{2}\right)+2 \pi r h$. The volume of the container is $V=100 \pi=\pi r^{2} h$. So $h=\frac{100}{r^{2}}$ and so $S(r)=2 \pi r^{2}+\frac{200 \pi}{r}$. Taking the derivative and setting it equal to 0 gives $4 \pi r-\frac{200 \pi}{r^{2}}=0$ so $r^{3}=50$ so $r=\sqrt[3]{50}$.
14. An airline is selling tickets for $\$ 200$ each and sells 50 per plane. For every $\$ 10$ they decrease the price, they sell 10 more tickets. The plane can hold a maximum of 100 passengers. At what price should they sell their tickets for maximum revenue?

Solution: Let x be the amount they decrease the price. Then at a price of $200-x$ each, they sell $50+x$ tickets. So the total revenue is $R(x)=(200-x)(50+x)$. Taking the derivative, we get $R^{\prime}(x)=150-2 x$. Setting the derivative to 0 , we get that $x=75$ so we should sell $50+75=125$ tickets. But since the plane has a maximum of 100 passengers and $R^{\prime}(x)$ for all $50+x<125$, this tells us that $x=50$ is the maximum on the domain of x which is $\{x: x \leq 50\}$. So they should set a price of $200-50=\$ 150$.
15. Find the rectangle of largest area whose diagonal is of length L.

Solution: Let one of the side lengths of the rectangle by s, then finding the largest area is the same as finding the largest area squared which is $s^{2}\left(L^{2}-s^{2}\right)$. Taking the derivative and setting it equal to 0 gives $2 L^{2} s-4 s^{3}=0$ so $s=0$ or $s=\frac{L}{\sqrt{2}}$. At $s=0$, the second derivative is positive and at $s=L / \sqrt{2}$, the second derivative is negative which tells us that $s=L / \sqrt{2}$ gives us the largest area. The other side length is $\sqrt{L^{2}-L^{2} / 2}=L / \sqrt{2}=s$ so the largest area is achieved with a square.
16. Find the area of the smallest triangle formed by the x axis, y axis, and a line that goes through the point $(4,2)$.

Solution: Suppose that the line goes through the point $\left(0, y_{0}\right)$. Then, the slope of the line is $\frac{2-y_{0}}{4}$ and is described by the line $y-y_{0}=\frac{2-y_{0}}{4} x$. The x intercept is when $y=0$ or when $x=\frac{4 y_{0}}{y_{0}-2}$. Thus, the area of the triangle is

$$
A\left(y_{0}\right)=\frac{1}{2} \cdot y_{0} \cdot \frac{4 y_{0}}{y_{0}-2}=\frac{2 y_{0}^{2}}{y_{0}-2} .
$$

Setting the derivative equal to zero gives $A^{\prime}(y)=\frac{2 y(y-4)}{(y-2)^{2}}$ so the two solutions are $y=0$ and $y=4$. The second derivative is $\frac{16}{(y-2)^{3}}$ and so $y_{0}=0$ is a local maximum and $y_{0}=4$ is a local maximum. So the area is $\frac{2 \cdot 4^{2}}{4-2}=16$.
17. Find the largest rectangle that can be inscribed into a semicircle of radius 1 so that one side of the rectangle is part of the diameter of the semicircle.

Solution: Let the height of the rectangle be h. Then the other side of the rectangle must be $2 \sqrt{1-h^{2}}$. So we want to maximize $2 h \sqrt{1-h^{2}}$, which is the same as maximizing its square $4 h^{2}\left(1-h^{2}\right)$. Setting the derivative equal to 0 gives $8 h-16 h^{3}=0$ so $h=1 / \sqrt{2}$. The area is $2 / \sqrt{2} \cdot 1 / \sqrt{2}=1$.
18. Suppose you only have $1 m$ of wire. You are to construct a circle and a square. What is the maximum and minimum total area of the circle and square?

Solution: Let s be the side length of the square and r be the radius of the circle. Then $4 s+2 \pi r=1$ so $r=\frac{1-4 s}{2 \pi}$. So the total area is

$$
A(s)=s^{2}+\frac{\pi(1-4 s)^{2}}{4 \pi^{2}}
$$

Setting the derivative equal to 0 gives $s=\frac{1}{\pi+4}$ and the second derivative is $2+\frac{8}{\pi}$ which is always positive. Thus, $s=\frac{1}{\pi+4}$ is a local minimum and $A=\frac{1}{16+4 \pi}$ is the minimum area. The domain of s is $[0,1 / 4]$ so the other critical points are the end point. We have that $A(0)=1 / 4 \pi$ and $A(1 / 4)=1 / 16$ so the maximum area is $1 / 4 \pi$ which occurs at $s=0$ so we only make a circle.

Tricky Limits

Problems

Solve all of the following questions without using L'Hopital's rule.
19. Find $\lim _{a \rightarrow 2} \frac{a^{2017}-2^{2017}}{a-2}$.

Solution: Letting $f(x)=x^{2017}$, we recognize this as $\lim _{a \rightarrow 2} \frac{f(a)-f(2)}{a-2}=f^{\prime}(2)=$ 2017 - 2^{2016}.
20. Find $\lim _{x \rightarrow 1} \frac{e^{3 x}-e^{3}}{x^{2}-1}$.

Solution: We can factor the bottom as $(x-1)(x+1)$. Letting $f(x)=e^{3 x}$, we recognize this derivative as

$$
\lim _{x \rightarrow 1} \frac{e^{3 x}-e^{3}}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1} \cdot \frac{1}{x+1}=\frac{f^{\prime}(1)}{2}=\frac{3 e}{2} .
$$

21. Find $\lim _{x \rightarrow 1} \frac{e^{\sqrt{x}}-e}{x^{2}-3 x+2}$.

Solution: Let $f(x)=e^{\sqrt{x}}$ so that $f^{\prime}(x)=e^{\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}}$. Then we can factor the bottom as $(x-1)(x-2)$ and the limit is

$$
\lim _{x \rightarrow 1} \frac{e^{\sqrt{x}}-e}{x^{2}-3 x+2}=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1} \cdot \frac{1}{x-2}=\frac{f^{\prime}(1)}{-1}=\frac{-e}{2} .
$$

22. Find $\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}+x}$.

Solution: Let $f(x)=\cos x$. Then the limit is

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}+x}=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0} \cdot \frac{1}{x+1}=\frac{f^{\prime}(0)}{1}=0 .
$$

23. Find $\lim _{x \rightarrow 2} \frac{x^{2}-4}{\sqrt{x}-\sqrt{4-x}}$.

Solution: We multiply the top and bottom by the conjugate to get that

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{\sqrt{x}-\sqrt{4-x}} & =\lim _{x \rightarrow 2} \frac{\left(x^{2}-4\right)(\sqrt{x}+\sqrt{4-x})}{x-(4-x)}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)(\sqrt{x}+\sqrt{4-x})}{2(x-2)} \\
= & \lim _{x \rightarrow 2} \frac{(x+2)(\sqrt{x}+\sqrt{4-x})}{2}=\frac{4(\sqrt{2}+\sqrt{2})}{2}=4 \sqrt{2} .
\end{aligned}
$$

24. Find $\lim _{x \rightarrow \infty} \sqrt{x^{2}-4 x+1}-(x+3)$.

Solution: Multiplying by the conjugate gives

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-4 x+1-(x+3)^{2}}{\sqrt{x^{2}-4 x+1}+(x+3)}=\lim _{x \rightarrow \infty} \frac{-10 x-8}{\sqrt{x^{2}-4 x+1}+(x+3)}
$$

Now dividing the top and bottom by x gives

$$
=\lim _{x \rightarrow \infty} \frac{-10-8 / x}{\sqrt{1-4 / x+1 / x^{2}}+(1+3 / x)}=\frac{-10}{1+1}=-5 .
$$

